Antibrackets and non-Abelian equivariant cohomology
ثبت نشده
چکیده
The Weil algebra of a semisimple Lie group and an exterior algebra of a symplectic manifold possess antibrackets. They are applied to formulate the models of non{abelian equivariant cohomologies. e-mail: [email protected]
منابع مشابه
ar X iv : h ep - t h / 95 11 08 1 v 1 1 3 N ov 1 99 5 Antibrackets and non - Abelian equivariant cohomology
The Weil algebra of a semisimple Lie group and an exterior algebra of a sym-plectic manifold possess antibrackets. They are applied to formulate the models of non–abelian equivariant cohomologies.
متن کاملRing structures of mod p equivariant cohomology rings and ring homomorphisms between them
In this paper, we consider a class of connected oriented (with respect to Z/p) closed G-manifolds with a non-empty finite fixed point set, each of which is G-equivariantly formal, where G = Z/p and p is an odd prime. Using localization theorem and equivariant index, we give an explicit description of the mod p equivariant cohomology ring of such a G-manifold in terms of algebra. This makes ...
متن کاملFirst non-abelian cohomology of topological groups II
In this paper we introduce a new definition of the first non-abelian cohomology of topological groups. We relate the cohomology of a normal subgroup $N$ of a topological group $G$ and the quotient $G/N$ to the cohomology of $G$. We get the inflation-restriction exact sequence. Also, we obtain a seven-term exact cohomology sequence up to dimension 2. We give an interpretation of the first non-a...
متن کاملOn continuous cohomology of locally compact Abelian groups and bilinear maps
Let $A$ be an abelian topological group and $B$ a trivial topological $A$-module. In this paper we define the second bilinear cohomology with a trivial coefficient. We show that every abelian group can be embedded in a central extension of abelian groups with bilinear cocycle. Also we show that in the category of locally compact abelian groups a central extension with a continuous section can b...
متن کاملJ an 2 00 5 Chiral Equivariant Cohomology I
For a smooth manifold equipped with a compact Lie group action, we construct an equivariant cohomology theory which takes values in a vertex algebra, and contains the classical equivariant cohomology as a subalgebra. The main idea is to synthesize the algebraic approach to the classical equivariant cohomology theory due to H. Cartan and Guillemin-Sternberg, with the chiral de Rham algebra of Ma...
متن کامل